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Abstract

B cell activating factor (BAFF) is a member of the tumor necrosis factor (TNF) superfamily of

cytokines that links innate with adaptive immunity. BAFF signals through receptors on B

cells, making it an attractive molecule to potentiate vaccine-induced B cell responses. We

hypothesized that a rabies virus (RABV)-based vaccine displaying both antigen and BAFF

on the surface of the same virus particle would target antigen-specific B cells for activation

and improve RABV-specific antibody responses. To test this hypothesis, we constructed a

recombinant RABV-based vector expressing virus membrane-anchored murine BAFF

(RABV-ED51-mBAFF). BAFF was incorporated into the RABV particle and determined to

be biologically functional, as demonstrated by increased B cell survival of primary murine B

cells treated ex-vivo with RABV-ED51-mBAFF. B cell survival was inhibited by pre-treating

RABV-ED51-mBAFF with an antibody that blocks BAFF functions. RABV-ED51-mBAFF

also activated primary murine B cells ex-vivo more effectively than RABV as shown by sig-

nificant upregulation of CD69, CD40, and MHCII on the surface of infected B cells. In-vivo,

RABV-ED51-mBAFF induced significantly faster and higher virus neutralizing antibody

(VNA) titers than RABV while not adversely affecting the longevity of the vaccine-induced

antibody response. Since BAFF was incorporated into the virus particle and genome replica-

tion was not required for BAFF expression in-vivo, we hypothesized that RABV-ED51-

mBAFF would be effective as an inactivated vaccine. Mice immunized with 250 ng/mouse of

β-propriolactone-inactivated RABV-ED51-mBAFF showed faster and higher anti-RABV

VNA titers compared to mice immunized with inactivated RABV. Together, this model

stands as a potential foundation for exploring other virus membrane-anchored molecular

adjuvants to make safer, more effective inactivated RABV-based vaccines.
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Author summary

Over two-thirds of the world’s population lives in regions where rabies is endemic. Each

year, more than 15 million people receive multi-dose PEP and over 59,000 people die: one

rabies death every 9 minutes. Greater than 75% of rabies victims die at home and these

deaths are not included in the total deaths due to rabies. Up to 60% of rabies cases are in

children, making rabies the seventh most important infectious disease in terms of years of

life lost. Current vaccines regimens that are used to prevent rabies in humans are compli-

cated and costly. In this report, we describe a novel mechanism by which to improve

rabies vaccination by incorporating a membrane-anchored molecular adjuvant into the

surface of the rabies virus particle. This new vaccine strategy significantly enhanced the

speed and magnitude of the anti-rabies antibody responses and has the potential to

improve the efficacy of currently used inactivated RABV-based vaccines.

Introduction

Correlates of immunity for most human vaccines rely on antibodies for protection [1]. In the con-

text of preventing human RABV infections, the induction of rapid and long-lasting serum VNAs

is critical for protection because RABV vaccines are administered for both pre- and post-exposure

settings (reviewed in [2, 3]). Strategies aimed at enhancing the speed, magnitude and longevity of

vaccine-induced antibody titers is critical to improve vaccines against human rabies infection

and/or to develop vaccines against other infectious diseases where an effective vaccine is lacking.

One strategy to improve vaccine immunity is to target antigen to cells of the immune system. Typ-

ically, vaccine antigen is coupled to molecules specific for receptors on dendritic cells (DCs) and

then inoculated with adjuvant [4–7]. Alternatively, targeting antigen directly to B cells improves

the efficacy of antibody-based vaccines by increasing the speed [8] and magnitude of T cell-inde-

pendent (TI) and T cell-dependent (TD) B cell responses [reviewed in [9]]. Fusing secreted anti-

gen to CD180 [8] or C3d [reviewed in [9]] targets the antigen to cognate B cells, promoting rapid

and potent antibody responses against viruses [10–15], bacteria [16], or synthetic antigens [17].

Our published data show that cell-free RABV particles migrate to the draining lymph node

[18] and RABV vaccine strains directly target and activate primary murine and human B cells

[19, 20]. Based on this, we hypothesized that exploiting the highly repetitive structure of proteins

on the surface of RABV particles, and the natural tropism of attenuated RABV particles directly

to B cells, would promote rapid and long-lasting antibodies responses. Specifically, we describe a

novel RABV-based vaccine vector that displays both the antigen (RABV G) and molecular adju-

vant (BAFF) on the surface of the same RABV particle to activate antigen-specific B cells.

BAFF is a molecule expressed mostly by cells of the innate immune system as well as by

some T and B cells [reviewed in [21, 22]]. BAFF binds to the receptors B cell maturation anti-

gen (BCMA), the transmembrane activator and calcium modulator and cyclophilin ligand

interactor (TACI), and BAFF Receptor (BAFFR). These receptors are expressed on a wide

range of differentiated B cells, including marginal zone B cells, B1 B cells, follicular B cells, or

CD138+ antibody-secreting cells in secondary lymphoid organs. These receptors can also be

detected on B cells at the site of infection, such as in the lungs during an influenza infection

[23]. Due to the specificity of receptor expression on B cells, BAFF has the ability to modulate

a wide range of B cell functions and enhance the efficacy of antibody-based vaccination,

including: 1) mediating B cell survival and proliferation; 2) increasing protective IgG antibody

titers [24]; 3) inducing and maintaining T and B cell responses, including antibody secreting

cells, which are the most important effector B cell population in the context of protection

against RABV infection; 4) sustaining antibody responses to influenza virus by maintaining
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antibody-secreting cells [23]; 5) enhancing antibody-mediated protection in models of other

infectious diseases, including HIV, pneumococcus, malaria, Trypanosoma cruzi (Chagas dis-

ease) and RSV [25–29]; and, 6) BAFF potently augments B1 B cells to secrete IgM [29]. Impor-

tantly, BAFF influences B cell proliferation, differentiation and long-term survival of antiviral

antibody secreting cells during recovery from alphaviral encephalomyelitis [30], suggesting

BAFF may influence B cell responses in the CNS as well as in peripheral sites, which may help

to improve vaccine-induced immunity against other neurotropic viruses, such as RABV.

We previously showed that expressing secreted BAFF, but not a proliferating inducing

ligand (APRIL), from a recombinant RABV-based vaccine targets the extrafollicular pathway

of B cell differentiation and improves rabies vaccinations [31, 32]. However, this approach

requires viral gene expression in-vivo to produce BAFF, eliminating its potential as an inacti-

vated vaccine. To circumvent this issue, and to target antigen-specific B cells directly, we incor-

porated membrane-anchored BAFF into the viral membrane. We show that membrane-

anchored BAFF improves the speed and magnitude of vaccine-induced antibody response in

live attenuated and inactivated RABV-based vaccines.

Materials and methods

Ethics statement

All animal work was reviewed and approved by the Institutional Animal Care and Use Com-

mittee (IACUC) of Jefferson Medical College, Thomas Jefferson University (Animal protocol

#01838). Work was completed in accordance with international standards [Association for

Assessment and Accreditation of Laboratory Animal Care (AAALAC)] and in compliance

with Public Health Service Policy on Humane Care and Use of Laboratory Animals, The

Guide for the Care and Use of Laboratory Animals of the National Institutes of Health (NIH).

Construction and optimization of membrane-anchored molecular adjuvant

Genes encoding viral membrane-anchored murine BAFF were synthesized by Genscript (Pis-

cataway, NJ). The genes included (5’ to 3’): the restriction enzyme sites EcoRI and BsiWI, an

IL-2 signal sequence, the soluble form of mouse BAFF (Accession number BC106841) fused

in-frame with 0, 25, 51, or 127 membrane-proximal amino acids of the SAD-B19 RABV G

ectodomain (ED), RABV G transmembrane domain (TM), RABV G cytoplasmic domain

(CD), and NheI and BamHI restriction sites (Fig 1). The genes were cloned into expression

Fig 1. Construction of virus membrane-anchored murine BAFF. To construct a chimeric RABV G/BAFF fusion

protein, the RABV G signal sequence and ED was replaced with an IL-2 signal sequence and the BAFF ED

(ED0-mBAFF). Membrane-proximal 25, 51, or 127 amino acids of the RABV G ED were reintroduced into

ED0-mBAFF, resulting in ED25-mBAFF, ED51-mBAFF and ED127-mBAFF, respectively.

https://doi.org/10.1371/journal.pntd.0007800.g001
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plasmid pcDNA3.1(-) using the restriction sites EcoRI and BamHI, resulting in

pcDNA-ED0-mBAFF, pcDNA-ED25-mBAFF, pcDNA-ED51-mBAFF or pcDNA-ED127-m-

BAFF. BSR cells were transfected with 2 μg of each plasmid. Three days later, the cells were col-

lected and analyzed for surface expression of BAFF using rat anti-mouse BAFF monoclonal

antibody (R&D Systems; Clone #121808). Samples were fixed in 4% paraformaldehyde and

analyzed on a BD LSRFortessa cell analyzer. Data were analyzed using FlowJo (FlowJo, LLC.)

and Prism 5 (Graphpad). An unpaired, two-tailed Student’s t test was used to compare mean

fluorescent intensity (MFI) between experimental transfection with mock-transfected cells

(�p<0.05; ��p<0.01; N = 3 from 2 independent experiments completed in duplicate).

Vaccine construction, recovery and characterization

Construction and recovery of RABV-ED51-mBAFF. RABV is a molecular clone of the

vaccine strain of rabies virus, SAD-B19 [33–35]. To construct a RABV-based vaccine vector

expressing virus membrane anchored murine BAFF, ED51-mBAFF was digested from

pcDNA-ED51-mBAFF using the restriction enzymes BsiWI and NheI and then inserted into

pRABV also digested with BsiWI and NheI, resulting in pRABV-ED51-mBAFF. Infectious

virus was recovered as described previously [20] and named RABV-ED51-mBAFF.

Western blot analyses of sucrose-purified RABV-ED51-mBAFF particles. BSR cells

were seeded at 5 x 106 cells in t75 tissue culture flask in Dulbecco’s Modification of Eagles media

(DMEM) containing 5% heat-inactivated fetal bovine serum (FBS) (Gibco)/1% Penicillin/Strep-

tomycin (PS) (Corning) and infected with RABV or RABV-ED51-mBAFF at a multiplicity of

infection (MOI) of 0.1 and incubated for 3 days at 37˚c and 5% CO2. Supernatants were har-

vested and clarified of cell debris by centrifugation (5 min., 3,000g, room temperature). Viral pel-

lets were collected by ultra-centrifugation for 1 hour, 24k rpm at 4˚C (Beckman SW-28 rotor)

over 20% sucrose/PBS cushion. Purified virus was reconstituted in 200ul PBS and incubated

overnight at 4˚C. Purified virus was reduced and denatured, separated by SDS-PAGE, trans-

ferred to polyvinylidene fluoride membrane, and blocked with 5% non-fat milk (LabScientific)

in PBS overnight. Membrane was probed for one hour with polyclonal goat IgG anti-murine

BAFF primary antibody (AF2106; R&D Systems) at a dilution of 1:2,000 in PBS-0.05% Tween-

20 (PBS-T), washed 3 times with PBS-T, then incubated for one hour with donkey anti-goat IgG

horseradish peroxidase-conjugated secondary antibody (Jackson Immuno) diluted 1:30,000 in

PBS-T. The membrane was developed using ECL Western blotting substrate (Pierce). Bots were

analyzed using Flurochem M System. Protein deglycosylation was completed on sucrose purified

RABV-ED51-mBAFF as described by the manufacturer (New England Biolabs, Protein Deglyco-

sylation Mix II; P6044) and then analyzed by Western blot analysis as just described.

One-step and multi-cycle growth curves. BSR cells were seeded at 5 x 105 cells/well in a 6

well plate in DMEM containing 5% heat-inactivated FBS/1% PS. Wells were infected 24 hours

later with a MOI of 0.01 or 5 for multi-cycle or one-step growth curves, respectively. One-hour

post-infection, cells were washed 3 times with PBS to remove excess virus and then incubated

at 37˚C and 5% CO2. 100 μl aliquots of tissue culture supernatants were harvested at 24, 48, 72

and 96 hours post-infection. Wells were refed DMEM after each harvest. Titers of harvested

supernatants were determined on BSR cells in duplicate after 48 hour incubation at 37˚C and

5% CO2 as described [36, 37]).

Ex Vivo primary B cell survival and activation

Primary murine B cell survival. Spleens were harvested from naïve 8–10 week old female

C57BL/J6 mice (Jackson) and single-cell suspensions prepared [38–40]. Red blood cells were

lysed using ACK lysis buffer (A1049201; Thermofisher), filtered by 70 micron filter, and
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seeded at a density of 5 x 106 /ml in splenocyte media (RPMI 1640 containing 10% FBS, 50 μM

beta-mercaptoethanol, 100Ul/mL PS, and 100 mM HEPES). Cells were infected with a MOI of

5 with sucrose purified RABV, RABV-ED51-mBAFF, or RABV-ED51-mBAFF pre-treated for

2 hours at 37˚C with 5μg/ml an antibody [20] (Sandy-2; Adipogen) that neutralizes BAFF

function by inhibiting mouse BAFF binding to its receptors. Two days later, cells were har-

vested and plated at 106 cells/well of a 96-well plate, pelleted at 300 x g, washed in FACS Buffer

(PBS containing 2% FBS). Cells were incubated with Fixable Live/Dead-DAPI (Thermofisher),

washed with FACS Buffer and incubated with CD16/32 FcBlock (BD Biosciences). Cells were

stained with 0.2 μg/ml anti-B220-PE (Invitrogen, 12-0452-82) for 30 minutes. Cells were fixed

in 3% paraformaldehyde (Affimetrex) for 30 minutes, washed, and resuspended in FACS

buffer and analyzed using BD Fortessa flow cytometer. Data was analyzed using FlowJo Soft-

ware and significance was calculated using unpaired, two-tailed Student’s t test in Prism 6

(Graphpad) software. To compare two groups of data, an unpaired two-tailed Student’s t test

was used (�p�0.05; ��p� 0.01; N = 2 completed in duplicate).

Primary murine B cell activation. Spleens were harvested as described above and cell sus-

pensions were infected at a MOI of 5 with RABV, RABV-ED51-mBAFF or equivalent volume

of PBS, and incubated for 2 days 37˚C and 5% CO2. Cells were harvested and plated at 106 cells/

well of a 96-well plate, pelleted at 300 x g, washed in FACS Buffer (PBS containing 2% FBS).

Cells were incubated with Fixable Live/Dead-Aqua (Thermofisher), washed with FACS Buffer

and incubated with CD16/32 FcBlock (BD Biosciences). Cells were stained with surface anti-

body mixture, including (0.2 ug/ml each) anti-B220-PerCP (Clone RA6B2; BD Biosciences),

anti-CD40-APC (Clone 1C10; eBiosciences), anti-CD69-V450 (Clone 41:2F3; BD Biosciences),

and anti-MHC-II-Alexa Fluor 700 (Clone M5/11415.2; BD Biosciences) for 30 minutes. Cells

were fixed in 3% paraformaldehyde (Affimetrex) for 30 minutes, washed, and permeabilized

using BD Perm/Wash (554723; BD Biosciences) for anti-Rabies-N-FITC (FujiRebio) intracellu-

lar staining. Cells were suspended in FACS buffer and analyzed using LSRII flow cytometer.

Data was analyzed using FlowJo Software. To compare two groups of data, an unpaired, two-

tailed Student’s t test was use (�p�0.05; ��p�0.01; ���p�0.001; N = 3 completed in duplicate).

Mouse immunogenicity studies: Evaluation of antibody responses by ELISA and Rapid

Fluorescent Foci Inhibition Test (RFFIT). Groups of 8–10 weeks old C57BL/J6 female mice

(Jackson) were immunized intramuscularly (i.m) via gastrocnemius with 100 μl (50 μl/leg) of

live or inactivated RABV or RABV-ED51-mBAFF as indicated in the figures. Inactivated

RABV and inactivated RABV-ED51-mBAFF were prepared as follows: virus stocks were

grown in OptiPRO Serum Free Media (Gibco) [4mM L-Glutamine, 1% PS], harvested, and

cell debris was removed using Corning 0.45μm filter (430516; Corning). β-Propiolactone

(BPL; P5648; Sigma) was added to viral supernatants (final concentration 0.05% BPL), and

incubated overnight at 4˚C. Treated supernatants were purified using ultracentrifugation.

Viral inactivation was confirmed by viral titer [37]. Total protein concentrations were quanti-

fied by BCA Protein Assay Kit as described by the manufacturer (Pierce). Blood from immu-

nized mice was collected via retro-orbital at 5, 7, 10 days post-immunization. RABV G-specific

IgM and IgG (and subclasses) antibody levels were determined by ELISA as described previ-

ously [36–39]. VNA titers were determined by RFFIT as described previously [36, 37, 40].

Results

Fifty-one (51) membrane-proximal amino acids of the RABV G ED are

required for surface expression of virus membrane-anchored BAFF

In this project, we aimed to exploit the natural ability for attenuated RABV-based vaccine

strains to target B cells for infection and activation [19, 20, 41] by further directing RABV
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particles to B cells. To that end, we cloned and recovered a recombinant RABV-based vaccine

expressing the wild-type RABV G (antigen) as well as virus membrane-anchored BAFF (adju-

vant). The membrane-anchored BAFF in this first experiment consisted of an IL-2 signal

sequence fused in-frame with the ectodomain of murine BAFF (mBAFF) and the RABV G TM

and CD (RABV-mBAFF). However, this chimeric BAFF/RABV G fusion protein was not traf-

ficked to the cell surface or incorporated into RABV particles. It was previously shown that

some foreign proteins require additional membrane-proximal amino acids of the RABV G ED

to support surface expression and incorporation into RABV particles [42]. To determine

whether membrane-proximal amino acids of the RABV G ED improved surface expression of

BAFF, we cloned a series of expression plasmids encoding for an IL-2 signal sequence, soluble

murine BAFF fused in-frame with 0, 25, 51, or 127 membrane-proximal amino acids of the

RABV G ED, RABV G TM, and RABV G CD, resulting in pcDNA-ED0-mBAFF, pcDNA-

ED25-mBAFF, pcDNA-ED51-mBAFF or pcDNA-ED127-mBAFF (Fig 1). BSR cells were

transfected with each plasmid and the expression of BAFF on the surface of cells was measured

by FACS analysis. Representative gating strategies used to identify BAFF surface expression

are shown in Fig 2A and a summary of the data is provided in Fig 2B. BAFF expression on the

surface of cells transfected with pcDNA-ED0-mBAFF was not significantly different from

mock-transfected cells. This is consistent with our finding above that BAFF was not trafficked

to the cell surface when infected with RABV-mBAFF. Significant, but low levels of surface

expression of BAFF were detected on the surface of BSR cells transfected pcDNA-ED127-m-

BAFF. High levels of BAFF were detected on the surface of BSR cells transfected with pcDNA-

ED25-mBAFF or pcDNA-ED51-mBAFF. Together, these data indicate that the addition of 25

or 51 amino acids of the membrane-proximal RABV G ED supports the transport of BAFF

through the endoplasmic reticulum, Golgi apparatus, and to the cell surface. Based on previous

findings that ED51 supported efficient cell surface expression of an unrelated proteins [42], we

used the gene encoding for the ED51-mBAFF fusion protein in subsequent experiments.

ED51-mBAFF is efficiently incorporated into RABV-ED51-mBAFF

particles while not influencing virus growth kinetics

The results described above indicate that the inclusion of 51 membrane-proximal amino acids

of the RABV G ED would support the incorporation of BAFF into the membrane of RABV

particles. To test this hypothesis, a recombinant RABV-based vector was cloned and recovered

that expresses ED51-mBAFF (RABV-ED51-mBAFF) (Fig 3A). Western blot analysis of

sucrose-purified RABV or RABV-ED51-mBAFF showed that ED51-mBAFF was incorporated

into RABV-ED51-mBAFF particles (Fig 3B). Of note, the two bands that were detected with

the anti-BAFF antibody were reduced to a single band when deglycosylated prior to a Western

blot analysis (Fig 3B). This is consistent with the finding that BAFF is a peptide glycoprotein

[43]. One-step (Fig 3C, left) and multi-cycle (Fig 3C, right) growth curves showed that RAB-

V-ED51-mBAFF grew to titers similar as RABV in BSR cells. Similar growth kinetics indicate

that the insertion of this foreign gene into the RABV genome, or the incorporation of the chi-

meric protein into the virus particle, did not affect the ability for RABV-ED51-mBAFF to

infect, replicate or spread from cell-to-cell in-vitro.

ED51-mBAFF is functional and increases survival of RABV-ED51-mBAFF-

treated primary murine B cells

To confirm that the viral membrane-anchored ED51-mBAFF was functional, primary murine

splenocytes treated with RABV-ED51-mBAFF showed a significant, three-fold increase in B

cell survivorship compared to cells treated with RABV (Fig 4A and 4B). Pre-treating
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RABV-ED51-mBAFF with an antibody that neutralizes BAFF function (Clone Sandy-2)

[44] reduced B cell survival to levels detected in mock-treated cells, demonstrating the

increase in B cell survivorship was due to BAFF on the surface of the viral particle. This is

consistent with the findings by others that endogenously produced BAFF improves B cell

survival [43]. Of note pre-treating RABV-ED51-BAFF with the anti-BAFF neutralizing anti-

body did not influence the ability for the virus to infect BSR cells (Fig 4C), indicating that

the antibody is not hindering B cell infection and activation via steric hinderance. Together,

the chimeric ED51-mBAFF protein, which is incorporated into the virus membrane, is bio-

logically active.

RABV-ED51-mBAFF targets primary murine B cells for infection and

activation ex-vivo
Based on our previous findings that live attenuated RABV vaccine strains activate primary

murine and human B cells ex-vivo [19, 20], we hypothesized that a recombinant RABV-based

vaccine that incorporates membrane-anchored BAFF into the virus particle would promote B

cell infection and enhanced B cell activation ex-vivo. Naïve primary murine splenocytes

infected RABV-ED51-mBAFF showed a significant increase in the percentage of RABV N+

B220+ B cells that express the activation markers CD40 (Fig 5A and 5D), CD69 (Fig 5B and

5E) and MHCII (Fig 5C and 5F) compared with cells treated with RABV. Only background

levels of RABV N+ B220+ cells were detected in mock-treated splenocytes. Together, these data

confirm: i.) data from Fig 4 showing that ED51-mBAFF is functional, ii.) our previous reports

Fig 2. Twenty five or 51 amino acids of the membrane-proximal RABV G ED support the transport of BAFF to

the surface of cells. BSR cells were transfected with pcDNA-ED0-mBAFF, pcDNA-ED25-mBAFF,

pcDNA-ED51-mBAFF or pcDNA-ED127-mBAFF and three days later the cells were collected and fixed with 3%

paraformaldehyde. Mock (PBS)-treated cells served as negative control cells. Cells were stained with mouse BAFF

antibody conjugated to PE. Immunostained cells were analyzed by FACs analysis for BAFF surface expression. (A)

Representative gating strategy to determine BAFF expression on the surface of BSR cells. (B) The MFI of surface

expression of BAFF is summarized. To compare BAFF expression levels from each chimeric BAFF/RABV G fusion

protein to mock-treated cells, an unpaired two-tailed Student’s t test was used (�p�0.05; ��p�0.01; ns = not significant;

N = 3 from 2 independent experiments completed in duplicate).

https://doi.org/10.1371/journal.pntd.0007800.g002
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showing that attenuated RABV-based strains activate naïve primary murine B cells [19, 20],

and iii) that expressing virus membrane-anchored BAFF from RABV-ED51-mBAFF enhances

B cell activation in RABV-targeted B cells.

Live attenuated RABV-ED51-mBAFF induces rapid antibody responses in

mice

The above data indicate that RABV-ED51-mBAFF activates naïve primary murine B cells

more effectively than does RABV ex-vivo, suggesting that RABV-ED51-mBAFF might

improve B cell responses in-vivo compared to RABV. Mice immunized with 103 (Fig 6A) or

105 (Fig 6B) ffu/mouse of RABV-ED51-mBAFF showed significantly higher RABV G-specific

IgM antibody responses as early as 5 days post-immunization with as little as 103 ffu/mouse of

virus compared to mice immunized with the same dose of RABV. In addition, immunization

with 103 or 105 ffu/mouse of RABV-ED51-mBAFF induced significantly higher and faster

RABV G-specific IgG antibody responses compared to RABV at almost all time points tested

(Fig 6C and 6D). Of note, mice immunized with only 103 ffu/mouse with RABV-ED51-m-

BAFF showed similar antibody kinetics compared to mice immunized with 105 ffu/mouse

with RABV indicating that 100-fold less RABV-ED51-mBAFF is needed to induce similar

anti-RABV G antibody responses as the parental virus, RABV.

Fig 3. Construction and characterization of a recombinant RABV-based vector displaying virus membrane-anchored BAFF

(RABV-ED51-mBAFF). (A) RABV is a molecular clone of the attenuated vaccine strain of RABV, SAD-B19. The gene encoding ED51-mBAFF

from pcDNA-ED51-mBAFF (Fig 1) was digested with BsiWI and NheI and then ligated into pRABV previously digested with BsiWI and NheI,
resulting in pRABV-ED51-mBAFF. Infectious virus was recovered and named RABV-ED51-mBAFF. (B) To analyze incorporation of

ED51-mBAFF into RABV-ED51-mBAFF virions, sucrose-purified RABV or RABV-ED51-mBAFF particles were separated by SDS-PAGE and

transferred to a nitrocellulose membrane. Blots were probed with either an anti-BAFF antibody (left panel) or anti-RABV G antibody (right panel).

(C) BSR cells were infected with RABV or RABV-ED51-mBAFF at a MOI of 5 (one-step growth curve, right panel) or 0.01 (multi-cycle growth

curve, left panel). Aliquots of tissue culture supernatants were collected at various times post-infection and viral titers were determined in

duplicate.

https://doi.org/10.1371/journal.pntd.0007800.g003
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Antibodies produced by RABV-ED51-mBAFF are neutralizing and biased

towards a Th1-type response

VNAs directed against the single viral transmembrane glycoprotein are the primary corre-

late of immunity to protect against rabies infections. Consistent with the antibody titers

measured by ELISA in Fig 6, VNA titers were higher in mice immunized with either 103

(Fig 7A) or 105 (Fig 7B) ffu/mouse of RABV-ED51-mBAFF compared with mice immu-

nized with RABV. VNA titers almost 10-fold higher than the level suggestive of a satisfac-

tory immunization were detected in mice immunized with 105 ffu/mouse as early as 5 days

post-immunization. In addition to the magnitude of vaccine-induced antibody responses, a

vaccine that elicits potent Th1-type antibody responses, exemplified by an enhancement in

the ratio of vaccine-induced IgG2c/IgG1 antibodies, might be beneficial in post-exposure

settings when infection has already occurred [37]. RABV-ED51-mBAFF induced a highly

Th1-biased antibody response as demonstrated by an IgG2c/IgG1 ratio of about 5.

Together, the incorporation of BAFF into the membrane of RABV particles not only

increases the magnitude and speed of the VNA titers, but also promotes a Th1-type anti-

body response. Antibody titers were consistent between mice immunized with RAB-

V-ED51-mBAFF and RABV six months post-immunization, indicating altering early events

in B cell activation do not adversely affect the ability for RABV-ED51-mBAFF to induce

longer lasting immunity (Fig 7D).

Fig 4. Virus membrane-anchored ED51-mBAFF is functional. Naïve primary murine splenocytes were infected with a MOI of 5

with sucrose-purified RABV, RABV-ED51-mBAFF, or RABV-ED51-mBAFF pre-treated with a neutralizing anti-BAFF antibody.

Splenocytes treated with media alone (mock-infected) served as a negative control. No additional mitogens were added to the

culture to maintain the B cells and accessory splenocytes in a resting state similar to that in which they would exist in-vivo at the time

of initial immunization. Two days later, cells were collected and analyzed for B cell survival by staining cells with anti-B220-PE

antibody and Fixable Live/Dead-DAPI stain followed by FACS analyses. (A) Gating strategy for the presence of live B220+ cells. (B)

Summary graph showing the percent of live B220+ cells. (C) BSR cells (a derivative of baby hamster kidney cells) were infected with a

MOI of 5 with sucrose-purified RABV-ED51-mBAFF or RABV-ED51-mBAFF pre-treated with a neutralizing anti-BAFF antibody.

Two days later, supernatants were collected and titered on BSR cells. To compare two groups of data, an unpaired two-tailed

Student’s t test was used (�p�0.05; ��p�0.01; ns = not significant; N = 2 completed in duplicate).

https://doi.org/10.1371/journal.pntd.0007800.g004
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Inactivated RABV-ED51-mBAFF induces rapid antibody responses in mice

Because ED51-mBAFF is embedded into the viral membrane during propagation in tissue cul-

ture and viral genome replication is not required to produce BAFF in-vivo, we hypothesized

that RABV-ED51-mBAFF would induce potent immunity as an inactivated vaccine. Mice

immunized with 10 ug/mouse of inactivated RABV-ED51-mBAFF induced a slightly but sig-

nificantly faster and higher anti-RABV G IgM (Fig 8A) and IgG (Fig 8B) antibody responses

compared with mice immunized with equal doses of inactivated RABV. To determine whether

lower doses of inactivated RABV-ED51-mBAFF improved vaccine-induced immunity com-

pared with lower doses of inactivated RABV, mice were immunized with 250 ng/mouse of

inactivated RABV-ED51-mBAFF or inactivated RABV. As shown in Fig 8C, VNA titers in

mice immunized with inactivated RABV-ED51-mBAFF were almost 20-fold higher than the

suggested VNA titers indicative of a satisfactory immunization (>0.5 IU/ml) 5 days post-

immunization. The antibody responses induced by inactivated RABV-ED51-mBAFF exem-

plify the potential of incorporating membrane-anchored molecular adjuvants into the surface

of an inactivated viral particle to improve vaccine-induced B cell responses.

Discussion

B cells are strongly activated by highly structured, membrane-anchored antigen, such as the

case with the viral glycoprotein displayed on the surface of RABV particles. In this project, we

Fig 5. RABV-ED51-mBAFF activates primary murine B cells more effectively than RABV ex-vivo. Naïve primary

murine splenocytes were infected at a MOI of 5 with RABV or RABV-ED51-mBAFF, or treated with medium alone

(mock infected) for two days ex-vivo. No additional mitogens were added to the culture to avoid expressing activation

molecules that could enhance sensitivity to RABV infection and activation. The cells were immunostained for cell-

surface expression of B220 and the activation markers CD40, CD69, and MHCII, as well as immunostained internally

for the presence of RABV N, which is indicative of infection. Representative gating strategy are shown for B220+ B cells

gated on RABV N+ and CD40 (A), CD69 (B) or MHCII (C). The percentage of RABVN+CD40+ B cells (D),

RABVN+CD69+ B cells (E) or RABVN+MHCII+ B cells (F) are indicated. To compare two groups of data, an unpaired,

two-tailed Student’s t test was use (�p�0.05; ��p�0.01; ���p�0.001; ����p�0.0001; N = 3 completed in duplicate).

https://doi.org/10.1371/journal.pntd.0007800.g005

Virus membrane-anchored molecular adjuvants and rabies vaccines

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0007800 November 14, 2019 10 / 17

https://doi.org/10.1371/journal.pntd.0007800.g005
https://doi.org/10.1371/journal.pntd.0007800


exploited the highly repetitive structure of RABV surface proteins to display both antigen and

molecular adjuvant on the surface of the same virus particle. The molecular adjuvant, BAFF,

was expressed on the virus surface as a chimeric RABV G/BAFF fusion protein. Virus mem-

brane-anchored BAFF was shown to be functional, as demonstrated by the ability for RAB-

V-ED51-mBAFF particles to prolong primary murine B cell survival compared with RABV

alone. B cell survival was reduced by pre-treating RABV-ED51-mBAFF with a neutralizing

anti-BAFF antibody. RABV-ED51-mBAFF particles were also able to activate primary murine

B cells more effectively than RABV alone, supporting the conclusion that BAFF is functionally

displayed on the surface of the virus particle. The incorporation of membrane-anchored BAFF

into the virus particle improved the speed, magnitude and quality of vaccine-induced immu-

nity as a live vaccine vector. Because BAFF is displayed on the surface of the virus particle and

viral replication is not needed to produce BAFF, RABV-ED51-mBAFF showed potency as an

inactivated RABV-based vaccine with as little as 125 ng/mouse of vaccine.

Current vaccines used to prevent rabies in humans rely on inactivated RABV strains. Pre-

exposure vaccination is reserved for people at risk for infection, such as individuals working

with rabies in diagnostic or research laboratories, veterinarians, and professional animal han-

dlers. WHO also recommends that children in endemic areas receive pre-exposure vaccination

because children under the age of 15 are disproportionately affected by RABV infections [3].

Fig 6. 100-fold less RABV-ED51-mBAFF is needed to induce comparable immunity in mice immunized with

RABV. C57BL/6J mice were immunized i.m. with 103 or 105 ffu/mouse of RABV or RABV-ED51-mBAFF, or PBS as a

negative control. Blood was collected on days 5, 7 and 10 post-immunization as a source of serum. Four three-fold serial

dilutions of sera were analyzed by ELISA to determine anti-RABV G IgM (A and B) or IgG (C and D) antibody titers

and presented as OD490 of the reciprocal serial dilution. For comparison, sera from PBS-immunized mice were tested in

parallel. Statistical difference in antibody titers by ELISA between RABV- and RABV-ED51-mBAFF-immunized mice

was determined using an unpaired, two-tailed t test and data is presented as the mean ± SEM. �p�0.05; ��p�0.01;
���p�0.001; ����p�0.0001; N = 10 mice/group). (ffu = focus forming units; OD = optical density).

https://doi.org/10.1371/journal.pntd.0007800.g006
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Despite these exceptions, the primary means of preventing rabies in humans relies on PEP

administered after a person is exposed to a potentially rabid animal. WHO-recommended

post-exposure treatment is complex and costly [45]. The US Centers for Disease Control and

Prevention approved to reduce the number of inactivated RABV-based vaccine doses from

five to four during human rabies post-exposure treatment in the U.S. [46]. WHO recommen-

dations remain unchanged, although in areas of the world that are unable to afford this regi-

men, WHO recommends alternative vaccine schedules, most notably those used via

intradermal inoculation or shortened regimens [47–49]. Despite the progress in developing

alternative immunization schedules, they remain complex, expensive, multiple visits to medi-

cal facilities and skilled practitioners capable of administering the vaccine intradermally. These

obstacles contribute to decreasing the widespread use and thus reducing the effectiveness of

these vaccination regimens. Improving the efficacy of inactivated RABV-based vaccines might

be key to prevent human deaths due to rabies.

Inactivated viral particles are generally poor immunogens because they do not elicit potent

inflammatory responses required for effective CD4+ T-cell help. Inactivated RABV vaccines

also generate a Th2-biased antibody response characterized by IgG1 antibodies in mice or

IgG2 antibodies in humans [37] rather than more potent antiviral Th1-type antibodies. Modi-

fications to current inactivated RABV-based vaccines might help to enhance their effectiveness

Fig 7. RABV-ED51-mBAFF induces potent VNA titers and a Th1-biased antibody response, which does not adversely affect long

term immunity. Sera from mice immunized with 103 (A) or 105 (B) ffu/mouse of RABV-ED51-mBAFF or RABV were pooled and

analyzed for VNA titers using RFFIT. Data represents sera from 5 mice per group pooled in two assays (N = 10/group) and completed in

duplicate. International Units (IU)/ml were determined by comparing results to a WHO standard. Serum from mice immunized with 105

ffu/mouse on day 14 post-immunization were analyzed by ELISA for anti-RABV G IgG1 and IgG2c titers. (C) The ratio of IgG2c/IgG1 is

summarized from N = 10 mice per group. (D) Serum from mice immunized with 103 (left) or 105 ffu/mouse (right) 6 months post-

immunization were analyzed for total anti-RABV G IgG titers. Statistical difference in antibody titers by ELISA between RABV- and

RABV-ED51-mBAFF-immunized mice was determined using an unpaired, two-tailed t test and data is presented as the mean ± SEM.
�p�0.05 (N = 10).

https://doi.org/10.1371/journal.pntd.0007800.g007
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in humans. The use of traditional adjuvants can improve antigen delivery and/or augment vac-

cine-induced immunity of various vaccines being tested in human clinical trials [50]. Indeed,

studies describe preclinical data using CpG oligodeoxynucleotides (ODNs) [51, 52], poly(lac-

tide-co-glycolide) microspheres [53], or GLA-SE [54] as adjuvants. These studies have sug-

gested that the efficacy of inactivated RABV-based vaccines can be improved through the use

of proper adjuvants. It is likely that as alternative adjuvants are developed and tested in the

context of vaccines for other infectious agents, they can be developed for use with inactivated

RABV-based vaccines.

In addition to traditional approaches to include vaccine adjuvants, incorporating molecular

adjuvants into virus or virus-like particles is an option under investigation to improve vaccine-

induced antibody responses. We previously showed that the incorporation of Intracellular

Adhesion Molecule-1 (ICAM-1) into the membrane of RABV-based particles improved B cell

activation ex-vivo and RABV-specific immunity in-vivo [20]. Others have shown that RABV-

based VLPs displaying membrane-anchored GM-CSF [53], flagellin or Escherichia coli heat-

labile enterotoxin B subunit [55] improve the efficacy of RABV-based vaccines. Membrane-

anchored LTG, flagellin, cholera toxin B, or Ricin improve vaccine-induced immunity in the

context of an inactivated influenza virus or influenza virus-based VLP vaccines [56–58]. Mem-

brane-anchored molecular adjuvants also improve the efficacy of HIV/SIV-based vaccinations

[59, 60]. Together, the incorporation of membrane-anchored molecular adjuvants has the

potential to improve vaccine immunity against a wide range of infectious diseases. Of note,

since replication is not needed to express the membrane-anchored molecular adjuvant in-

vivo, these novel vectors can be utilized as inactivated vaccines. Indeed, we showed here that

an inactivated RABV-based vector displaying BAFF improved the speed and magnitude of the

anti-RABV antibody response without affecting the longevity of the response. This is critical

since RABV-based vaccines are used in both pre- and post-exposure settings. Future studies

will need to determine vaccine stability and evaluate mechanisms of attenuation. Nonetheless,

Fig 8. Inactivated RABV-ED51-mBAFF induces significantly faster and higher antibody responses in mice compared with inactivated RABV.

C57BL/6 mice were immunized i.m. with 10 ug/mouse inactivated RABV or inactivated RABV-ED51-mBAFF and blood was collected on days 5, 7 and 10

post immunization. Four three-fold serial dilutions of sera were analyzed by ELISA to determine anti-RABV G IgM (A) or IgG (B) antibody titers and

presented as OD490 of the reciprocal serial dilution. Statistical difference in antibody titers by ELISA between two groups of data was determined using an

unpaired, two-tailed t test and data is presented at the mean ± SEM. (�p�0.05; ��p�0.01; ���p�0.001; �����0.0001; N = 8 mice per group from two

independent experiments; OD = optical density). C) To confirm the antibodies were neutralizing and to determine whether lower doses of vaccine

effectively improved immunity, a separate group of C57BL/6 mice were immunized with 250 ng/mouse with inactivated RABV or inactivated

RABV-ED51-mBAFF. Blood was collected from immunized mice, pooled, and then tested by RFFIT for VNA titers (N = 5 mice per group in duplicate).

https://doi.org/10.1371/journal.pntd.0007800.g008
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these preliminary immunogenicity studies show that the incorporation of membrane-

anchored molecular adjuvants into the surface of RABV particles holds promise to circumvent

obstacles for the effective use of inactivated vaccines to prevent rabies infections in humans.
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